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SUMMARY 

A s e r i e s  of f i v e  highly swept arrow wings w a s  t e s t ed  t o  invest igate  t h e i r  
respective "off-design" performance. Aerodynamic charac te r i s t ics  of  the  family 
of wings, which w a s  designed f o r  Mach number 2.0 employing design l i f t  coeffi-  
c ients  of 0, 0.08, and 0.16, were measured at Mach numbers of 1.61 and 2.20 and 
a Reynolds number, based on the  mean aerodynamic chord, of 4.4 x 106. 

A TO0 swept arrow wing of aspect r a t i o  2.24 with moderate t w i s t  and camber 
(design l i f t  coef f ic ien t  of 0.08), which had produced the  highest  l i f t -d rag  
r a t i o  during design Mach number 2.0 t e s t s ,  likewise produced t h e  highest  l i f t -  
drag r a t i o s  during t h e  off-design t e s t s .  This wing gave m a x i m u m  l i f t -d rag  r a t i o s  
of 9.2, 8.8, and 8.4 at Mach numbers of 1.61, 2.05, and 2.20, respectively, com- 
pared with maximum l i f t -d rag  r a t i o s  of 8.1, 8.1, and 7.8 f o r  t h e  corresponding 
f la t  wing over t h e  same Mach number range. Two twisted and cambered wings (of 
70° and 75O leading-eQe s w e e p )  designed for a l i f t  coeff ic ient  of 0.16 exhibited 
r e l a t ive ly  minor super ior i ty  i n  l i f t -d rag  r a t i o s  over t h e  f l a t  w i n g s  throughout 
t h e  Mach number range and became approximately equal i n  maximum l i f t -d rag  r a t i o  
t o  t h e  f l a t  wings at a Mach number of 2.20. 

INTRODUCTION 

Several t e s t s  of highly swept, twisted and cambered arrow wings have been 
conducted t o  inves t iga te  t h e  aerodynamic eff ic iency of these  w i n g  shapes at t h e  
design Mach number. (For  example, see re fs .  1 and 2 . )  However, it has been 
real ized t h a t  t h e  t a i l o r i n g  of a wing through t w i s t  and camber techniques t o  
produce low drag due t o  l i f t  a t  some pa r t i cu la r  design point might penalize the  
w i n g  during "off-design" operation t o  such an extent t h a t  i t s  overa l l  usefulness 
would be severely compromised. 



Only moderate experimental success has been achieved i n  obtaining t h e  low- 
drag-due-to-lift charac te r i s t ics  of warped arrow wings tha t  a re  predicted by 
l i n e a r  theory. (See r e f .  2.) Suff ic ient  response t o  the  general twist and cam- 
ber  concept has been demonstrated, however, t h a t  the  off-design performance of 
these wings has become of i n t e re s t .  

I n  order t o  es tab l i sh  some of t he  off-design charac te r i s t ics  of a twisted 
and cambered arrow-wing ser ies ,  a family of f i v e  w i n g s  ( th ree  with TO0 of sweep 
and an aspect r a t i o  of 2.24 and two with 7 5 O  of sweep and an aspect r a t i o  of  1.65) 
w a s  t e s t ed  i n  t h e  Langley 4- by 4-foot supersonic pressure tunnel at Mach numbers 
of 1.61 and 2.20. These wings w e r e  o r ig ina l ly  developed and t e s t ed  t o  inves t i -  
gate  twis t  and camber e f f ec t s  at Mach number 2.0, employing design l i f t  coeffi-  
c ients  of 0 ( f la t  w i n g ) ,  0.08, and 0.16, as reported i n  references 1 and 3 .  
Although t h e  warped wings of t h i s  s e r i e s  f a i l e d  t o  match t h e i r  t heo re t i ca l  pre- 
diction, they did produce higher m a x i m u m  l i f t - d r a g  r a t io s  at Mach number 2.0 
than did t h e  f l a t  wings. I n  par t icular ,  t h e  TO0 sweptback w i n g  employing a 
design l i f t  coeff ic ient  of 0.08 produced a m a x i m u m  l i f t -d rag  r a t i o  of  8.8 com- 
pared with a value of 8.1 f o r  t h e  f la t  wing. (See r e f .  1. ) 

SYMBOLS 

A l l  forces  and moments were referred t o  the  wind axis system with t h e  moment 
center at t h e  longi tudinal  s t a t ion  at which t h e  25-percent s t a t ion  of t h e  mean 
aerodynamic chord i s  located. 

mean aerodynamic chord 

drag coeff ic ient ,  - 

L i f t  l i f t  coeff ic ient ,  - 

Drag 
qs 

qs 

slope of parabolic drag polar, re fe r red  t o  as drag-due-to-lift f ac to r  

dC 
da  

l i f t -curve  slope, 2, per  rad ian  

Pitching moment pitching-moment coeff ic ient  about E/4, 
SS'd 

l i f t -d rag  ra t io ,  CL/CD 

free-stream Mach number 

free-stream dynamic pressure 



- R free-stream Reynolds number based on c 

S wing area, half  - span model 

U 

A wing leading-edge sweepback angle 

Subscripts: 

m a x  maximum 

min m i n i m  

angle of a t tack  of w i n g  reference plane ( see  r e f .  1) 

MODELS AND INSTRUMENTATION 

A sketch of t h e  w i n g  i n s t a l l a t ions  i n  the  tunnel i s  shown i n  f igure  1. The 
w i n g s ,  all of which were half-span models, were mounted by means of a stub a t  the  
wing root t o  a four-component strain-gage balance located within a horizontal  
boundary-layer bypass plate ,  as shown schematically i n  t h e  f igure.  
p i tch  t h e  model, t h e  e n t i r e  plate-balance-model arrangement w a s  rotated about an 
ax is  normal t o  the  p la te .  
between t h e  wing root and t h e  surface of t he  boundary-layer bypass p l a t e  (except 
where t h e  w i n g  at tached t o  t h e  balance) i n  order t o  minimize airflow bleeding 
through t h e  root chord gap. 

In  order t o  

A minimal clearance of 0.010 t o  0.020 inch w a s  provided 

The aerodynamic descr ipt ion of t h e  f i v e  wings (designated wings 1 t o  5 )  i s  
Wings 1 t o  3 had a TO0 swept leading edge and an aspect presented i n  f igure  2. 

r a t i o  ( f u l l  span) of 2.24. 
t w i s t  and camber theory, t o  produce a minimum drag ( i n  comparison with t h a t  pro- 
duced f o r  other  wings i n  t h e  family) at a ce r t a in  l i f t  coeff ic ient .  
lift coef f ic ien ts  were 0, 0.08, and 0.16 f o r  w i n g s  1, 2, and 3,  respectively.  
( A  design l i f t  coeff ic ient  of 0 corresponds t o  a f la t  w i n g . )  
t h e  same notch r a t i o  (0 .35)  as t h e  f i rs t  three  w i n g s  but had a 75' swept leading 
edge, which resu l ted  i n  an aspect r a t i o  of 1.65. 
f o r  w i n g s  4 and 5 were 0 and 0.16, respectively.  

These wings were designed, through use of a r e s t r i c t e d  

These design 

W i n g s  4 and 3 had 

The design l i f t  coef f ic ien ts  

Thickness d is t r ibu t ions  f o r  all t h e  w i n g s  were determined by a 3-percent- 
th ick  biconvex a i r f o i l  sect ion i n  t h e  streamwise d i rec t ion  wrapped symmetrically 
about t h e  wing camber surface.  
t h e  camber surfaces f o r  t he  warped wings a re  presented i n  reference 1. 

The design theory and a de ta i led  descr ipt ion of 

TEST CONDITIONS 

The t e s t s  were conducted i n  t h e  Langley 4- by 4-foot supersonic pressure 
tunnel  at free-stream Mach numbers of 1.61 and 2.20 and a Reynolds number, based 

3 



on the  mean aerodynamic chord, of 4 .4  x lo6. This Reynolds number i s  the  same 
as t h a t  used i n  t h e  invest igat ion reported i n  reference 1 at Mach number 2.05. 

Boundary-layer t r a n s i t i o n  w a s  f ixed on t h e  w i n g s  by 1/8-inch-wide bands of 
sparsely d is t r ibu ted  No. 80 carborundum g r i t  located 1/4 inch behind t h e  wing 
leading edge. 
number range t o  ensure t h a t  f u l l y  turbulent flow was established over t he  wing 
surfaces a t  t h e  t e s t  conditions. 

Minimum drags of t h e  w i n g s  were measured over a wide Reynolds 

Angle of a t tack w a s  measured opt ica l ly  through t h e  use of prisms recessed 
i n  the  wing surface.  

From p re t e s t  cal ibrat ions and data  repea tab i l i ty  (including repeat runs of 
t h e  data  reported i n  r e f .  l), t h e  Mach number, angle of attack, and aerodynamic 
coef f ic ien ts  were estimated t o  be accurate within t h e  following l i m i t s :  

M . . . . . . . . . . . . . . . . . .  . . . . . . . . . . . . . . . . .  kO.01 
a, deg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  kO.05 
CD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  t0.0003 
cL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  ko.003 
cm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  +0.001 

RFSULTS AND DISCUSSION 

I n  invest igat ing the  off-design performance of t he  arrow-wing family t h a t  
w a s  t es ted ,  t h e  wing of pa r t i cu la r  i n t e r e s t  w a s  wing 2 (design l i f t  coeff ic ient  
of 0.08, TO0 sweepback). 
formance over t h e  corresponding.flat wing 1 during design Mach number 2.0 t e s t s  
and produced a maximum l i f t -d rag  r a t i o  of 8.8 compared with 8.1 f o r  wing 1 at the  
t e s t  Reynolds number of 4.4 x 106. 
coeff ic ient  of 0.16 (wings 3 and 5 )  with twice t h e  t w i s t  and camber of wing 2 had 
shown only modest improvement i n  l i f t -d rag  r a t i o  over t h e  corresponding f la t  
wings. 

This wing had demonstrated s igni f icant ly  improved per- 

(See r e f .  1.) The w i n g s  designed f o r  a l i f t  

Typical t r a n s i t i o n  check data, taken t o  ensure the  effectiveness of t h e  
carborundum s t r i p s  i n  t r ipp ing  t h e  boundary layer,  i s  presented f o r  t h e  f la t  wing 
( w i n g  1) i n  f igure  3 .  
Reynolds number up t o  the  t e s t  Reynolds number of 4.4 x 106 are shown f o r  Mach 
numbers of 1.61 and 2.20. Estimated minimum drag coeff ic ients  based on smooth- 
turbulent skin f r i c t i o n  and calculated wave drag are  a l so  shown f o r  comparison. 
A t  both Mach numbers, it i s  considered t h a t  f u l l y  turbulent flow w a s  es tabl ished 
over t he  wing surfaces a t  t h e  t e s t  Reynolds number. 

Measured minimum drag coeff ic ients  as a function of 

Standard three-component force data  f o r  t h e  f i v e  w i n g s  are p lo t ted  i n  f ig -  
ures  4 and 5 f o r  Mach numbers of 1.61 and 2.20, respectively, with data  f o r  
w i n g s  of t he  same planform plo t ted  on a s ingle  s e t  of axes t o  a id  i n  comparisons. 
These data  exhibi t  trends very s i m i l a r  t o  t h e  data  taken during t h e  design Mach 
number 2.0 t e s t s  (ref.  1). Plo ts  of l i f t  coeff ic ient  against angle of a t tack 
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are characterized by s h i f t s  i n  l e v e l  as a function of design l i f t  coeff ic ient ,  
with l i t t l e  difference i n  slopes. 
moment data i n  t h e  case of t h e  700 swept w i n g s .  
case, some nonl inear i ty  i n  the pitching-moment data i s  apparent, with t h e  f l a t  
wing (wing 4 )  exhibit ing a gradual decrease i n  s t a b i l i t y  at the  higher l i f t  coef- 
f i c i en t s ,  i n  a manner similar t o  the  Mach number 2.0 measurements. 

This r e su l t  i s  true also of the  pitching- 
However, i n  t h e  750 swept wing 

Plo ts  of l i f t - d r a g  r a t i o  f o r  t h e  f i v e  w i n g s  a r e  included i n  f igures  4 and 5 

O f  t he  
as a function of l i f t  coeff ic ient .  
Mach number, including data from reference 1, are presented i n  f igure  6. 
TO0 swept-wing ser ies ,  wing 2 consis tent ly  developed higher l i f t -d rag  r a t i o s  than 
the  other  two w i n g s  throughout t he  Mach number range. Values of (L/D),, of 9.2, 
8.8, and 8.4 were obtained f o r  w i n g  2 at Mach numbers of 1.61, 2.05, and 2.20, 
respectively; values of 8.1, 8.1, and 7.8 were obtained f o r  t h e  f l a t  wing 1 over 
t h e  same Mach number range. Wing 3 had demonstrated only s l i g h t l y  higher maximum 
l i f t -drag r a t i o  than w i n g  1 during the  Mach number 2.05 tes t ing ;  t he  increment i n  
maximum l i f t -drag r a t i o  between wing 3 and wing 1 decreased e s sen t i a l ly  t o  zero 
at Mach number 2.20, but increased considerably at Mach number 1.61. This behav- 
i o r  i s  perhaps due t o  t h e  a l lev ia t ing  e f fec t  of reduced Mach number on t h e  l o c a l  
sonic pressure-coefficient r e s t r i c t i o n  discussed i n  references 1 and 2. A t  a 
given sweep angle, as the  free-stream Mach number i s  decreased, higher l i f t  coef- 
f i c i e n t s  may be a t ta ined  without incurring sonic cross flow. Wings 4 and 5, of 
t h e  7 5 O  sweptback ser ies ,  exhibited charac te r i s t ics  t h a t  were closely similar t o  
those observed f o r  w i n g s  1 and 3 .  
cient  of 0.08 w a s  not constructed i n  t h e  7 5 O  sweptback series, it would be 
expected t h a t  t h e  performance of such a model would resemble t h e  performance of 
w i n g  2 (design l i f t  coeff ic ient  of 0.08) of t he  TO0 sweptback series. 
clusion i s  based upon t h e  observed s imi la r i ty  of t he  data f o r  t h e  TO0 and 75' 
sweptback s e r i e s  f o r  each of t h e  other  two design l i f t  coef f ic ien ts  (0  and 0.16). 

Cross p lo t s  of m a x i m u m  l i f t - d r a g  r a t i o  against  

Although a model with a design l i f t  coeffi-  

T h i s  con- 

From t h e  da ta  of f igure  6, it i s  concluded t h a t  t he  off-design performance 

O r ,  s t a t ed  
of twisted and cambered wings t h a t  perform well at t he  design l i f t  condition 
i s  l i k e l y  t o  be superior t o  t h a t  of otherwise iden t i ca l  f l a t  wings. 
another way, t w i s t i n g  and cambering a w i n g  t o  generate a high l i f t i ng  eff ic iency 
at a pa r t i cu la r  design condition w i l l  not resul t  i n  d r a s t i c  off-design penal t ies .  

The drag-due-to-lift charac te r i s t ics  of t h e  TO0 swept-wing s e r i e s  a re  a l so  
summarized i n  f igure  6. 
were based upon a parabolic envelope polar  defined by t h e  design point of w i n g  2 
and t h e  minimum drag point of w i n g  1. 
design point t o  be used i n  defining an optimum envelope f o r  t h e  se r i e s . )  
envelope drag-due-to-lift f ac to r s  were defined according t o  t h e  following 
equation : 

The experimentd drag-due-to-lift f ac to r s  AC$.CL~ 

(The drag of wing 3 w a s  too high at the  
The 
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I n  comparison, t h e  values corresponding t o  t h e  wings without leading-edge th rus t  
component ( cLa) experimental and the  theo re t i ca l  envelope drag-due-to-lift fat- 

t o r s  f o r  t w i s t  and camber wing design (from ref. 2) are a l so  shown, where the  
theore t ica l  drag-due-to-lift curves apply only t o  on-design w i n g s .  
it i s  of i n t e r e s t  t o  note t h e  p a r a l l e l  nature of t he  theore t ica l  and measured 
drag-due-to-lift fac tors  f o r  Mach numbers below design compared with the  ra ther  
rapid divergence of these fac tors  at Mach numbers above design. This behavior 
again tends t o  emphasize the  c r i t i c a l  nature of t h e  loca l  sonic pressure- 
coeff ic ient  res t r ic t ion ,  and the  associated l imi ta t ions  on the  l i n e a r  supersonic 
theory. 

I n  f igu re  6, 

CONCLUSIONS 

An experimental invest igat ion t o  determine t h e  "off-design" aerodynamic 
charac te r i s t ics  i n  p i t ch  at Mach numbers 1.61 and 2.20 of a twisted and cambered 
arrow-wing family designed f o r  Mach number 2.0 has provided the  following 
conclusions : 

1. Twisting and cambering a wing t o  generate a high l i f t ing  eff ic iency at a 
pa r t i cu la r  design condition will not r e su l t  i n  d r a s t i c  off-design penal t ies .  

2. The twisted and cambered arrow wing, which had produced t h e  highest l i f t -  
drag r a t i o  during t h e  design Mach number 2.0 tests, l ikewise produced the  highest 
lift-drag r a t i o s  during t h e  off-design tests. "his wing gave m a x i m u m  l i f t -d rag  
r a t i o s  of 9.2, 8.8, and 8.4 at Mach numbers of 1.61, 2.05, and 2.20, respectively,  
compared with maximum l i f t -d rag  r a t i o s  of 8.1, 8.1, and 7.8 f o r  t h e  corresponding 
f la t  w i n g  over t h e  same Mach number range. 

3. Two twisted and cambered w i n g s  (of TO0 and 75' leading-edge sweep) 
designed f o r  a l i f t  coeff ic ient  of 0.16 exhibited r e l a t ive ly  minor super ior i ty  
i n  lift-drag r a t i o s  over t h e  f la t  wings throughout t h e  Mach number range and 
became approximately equal i n  maximum l i f t -d rag  r a t i o  t o  t h e  f la t  w i n g s  at a 
Mach number of 2.20. 

Langley Research Center, 
National Aeronautics and Space Administration, 

Langley Station, Hampton, Va., January 14, 1963. 
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Boundary-layer bypass plate 

(a) Test r i g  in tunnel. Upper surface of boundary-layer bypass plate is parallel to tunnel flow. 

( Fastened to balance ) 
Strain - gage balance 

(b) Plate-balance-model details. 

Figure 1.- Sketch of test setup. 
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cfl n 

Q, 

" 
-.12 -.08 -.04 0 .04 .08 .I2 .I6 20 .24 28 

( a )  A = 70'. 

Figure 4.- Effect  of t w i s t  and camber on the  aerodynamic charac te r i s t ics  i n  pi tch.  M = 1.61. 
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" 
-.I2 -.08 -.04 0 .04 .08 .I2 .I6 20 .24 .28 

CL 

(a) A = 70°. Concluded. 

Figure 4.- M = 1.61. Continued. 
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Q, deg 

0 .04 .08 -12 .I6 .20 .24 .28 .32 " 
-.08 -.04 

CL 

(b) A = 75'. 

Figure 4.- M = 1.61. Continued. 



CL 

(b) A = 7 5 O .  Concluded. 

Figure 4.-  M = 1.61. Concluded. 
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CL 

(a) A = TO0. 

Figure 5.- Effec t  of twist and camber on t h e  aerodynamic cha rac t e r i s t i c s  i n  p i tch .  M = 2.20. 
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(a) A = 70'. Concluded. 

Figure 5.- M = 2.233. Continued. 
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C L  

(b) A = 75'. 

Figure 5.- M = 2.20. Continued. 
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-.08 -.w 0 .04 .08 .I 2 .I6 .20 .24 .28 .32 

CL 

(b) A = 75O. Concluded. 

Figure 5.- M = 2 .20 .  Concluded. 
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